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Abstract

The paper addresses the problem of pole-zero assignment using the receptance method in active vibration control and

has applications particularly in vibration absorption and detuning of structures to avoid resonance. An output feedback

approach is described that makes use of measured receptances, there being no requirement at all for the M, C, K matrices

usually obtained by finite elements. Therefore, in the controller design, the approximations, assumptions and other

modelling errors are largely eliminated. In addition, the method does not require the use of model reduction techniques or

the estimation of unmeasured states by an observer. An advantage of the output feedback method, over state feedback, is

that collocated actuator–sensor arrangements become possible. However this is achieved at the expense of creating

characteristic equations nonlinear in the control gains. Numerical examples are provided to illustrate the working of the

method. This is followed by a series of experimental tests carried out using collocated accelerometers and inertial actuators

on a T-shaped plate. In a series of experiments poles and zeros are assigned separately and simultaneously. Stability

robustness is demonstrated by applying a constraint to the singular values of the matrix return difference.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of eigenvalue assignment was studied quite extensively within the active control community
during the 1970s and 1980s. Wonham [1] had shown in 1967 that if a system was controllable, then its
eigenvalues (or poles) could be assigned by appropriate choice of state feedback. Davison [2] determined the
conditions under which output feedback could be applied for eigenvalue assignment. Kimura [3] studied the
problem of incomplete state observation and Moore [4] considered the freedom offered by state feedback
beyond the specification of distinct closed-loop eigenvalues. Kautsky et al. [5] described numerical methods
for determining robust (well conditioned) solutions to the state-feedback pole-assignment problem by
defining a solution space of linearly independent eigenvectors, corresponding to the required eigenvalues.
The solutions obtained were such that the sensitivity of assigned poles to perturbations in the system and gain
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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matrices was minimised. More recently, Datta et al. [6] developed the closed-form solution for the partial
pole-assignment problem where some desired eigenvalues were relocated while keeping all the other
eigenvalues unchanged.

In vibration analysis the purpose of assigning poles and zeros is to suppress vibration. Examples include,
moving poles further to the left-hand side of the complex plane to increase damping; assigning a zero at the
tuned frequency of a classical vibration absorber; and moving natural frequencies away from resonance with
applied harmonic loads by applying a passive structural modification. There are in fact numerous examples of
structures having natural frequencies close to fixed excitation frequencies. Recently much attention has been
focussed on inverse eigenvalue problems for assigning natural frequencies and mode shapes [7], vibration
nodes [8] and anti-resonances [9] by structural modification. For example Mottershead et al. [10,11] measured
rotational receptances and applied them to assign the natural frequencies and anti-resonances of a G-shaped
structure by means of an added beam. Mottershead and Tehrani [12] carried out the structural modification of
a helicopter tailcone also using measured rotational receptances obtained by means of an X-block attachment.
Mottershead and Ram [13] reviewed the field of inverse eigenvalue problems for vibration absorption by
structural modification and active control. The advantage of the structural modification approach is that the
system is guaranteed to remain stable. However there are very considerable disadvantages: (1) the form of the
modification that can be realised physically (symmetry, positive-definiteness, pattern of non-zero matrix
terms) is restrictive, (2) rotational receptances are very difficult to measure and require high levels of specialist
expertise, and (3) the number of eigenvalues to be assigned must be matched by the rank of the modification.

In recent times many of the disadvantages that prevented the practical application of active control to
flexible structures, with low damping and large numbers of modes, have been overcome. Inertial actuators for
the application of ‘sky-hook’ damping [14] and piezo-electric devices [15] for thin plate-like applications have
been developed. Active damping by velocity feedback has received much attention recently. A good example is
the ‘smart panel’ described by Gardonio et al. in a three-part paper [16–18] covering the theory, design and
application of the system, which comprised 16 decentralised units for the control of sound transmission. Each
control unit consisted of a collocated accelerometer-sensor and a piezoceramic patch actuator with a single
channel velocity feedback controller to generate active damping. A different approach, active constrained
layer damping [19], can be particularly helpful in damping the higher-frequency closed-loop modes that might
otherwise become unstable due to spillover [20].

The state-of-art in structural vibration control however is the ‘independent modal-space control’ method
developed by Meirovitch and his students and described in the book ‘Dynamics and Control of Structures’
[21]. This approach allows in principle for the control of one structural mode independently of the others. In
practice, the control force must be applied in the physical coordinates, which means that sufficient actuators
must be used to ensure that the selected mode is controllable while the others are unaffected by the control
force. Modern distributed actuators may be designed so that the vibration modes of a plate are controlled
selectively in this way [22], but these techniques are not applicable to large-scale built-up structures consisting
of many components. Meirovitch’s analysis is presented in terms of the physical mass, damping and stiffness,
M, C, K, matrices finally arranged in the form of first-order state-space equations (when general viscous
damping is included). From the point of view of the structural dynamics it is preferable to work with the
second-order matrix pencil [23]. Redefining the second-order equations of motion into a first-order realisation
destroys the desirable physical matrix properties of symmetry, definiteness and bandedness, and consequently
the first-order state-space model does not preserve any notion of the second-order nature of the system.

In most cases the M, C, K matrices are obtained by finite elements, and may include the representation of
distributed piezo-electric actuators and sensors, as described for example by Lim et al. [24]. Another way of
implementing the independent modal-space control of Meirovitch is to use modal test data, derived from
measured receptances, as described by Stobener and Gaul [25] in the active vibration control of a car body.
Rayleigh (proportional) damping was assumed. An alternative approach that uses the measured receptances
directly and makes no assumption about damping was proposed by Ram and Mottershead [26]. They showed,
in principle, how state-feedback control using measured receptances from the original (open-loop) system
could be used to assign all the poles of the closed-loop system using just a single actuator. Additionally, this
method preserved the second-order nature of the physical system since the receptances are given by,
H(io) ¼ (�o2M+ioC+K)�1 and the poles and zeros (anti-resonances) were assigned without the need to
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know or evaluate the M, C, K matrices. A further significant point is that the familiar state-space
approach requires a dynamic stiffness model and all the states must be measured, or estimated using an
observer, in order to make the system equations complete. On the other hand, when using the receptance
method only the available states are needed to complete the equations. This means that by the receptance
method there is no need to estimate the unmeasured states using an observer. Neither is there any need for
model reduction.

In this paper the receptance method for output-feedback is described in detail. The very considerable
advantage of the output feedback method over state feedback is that it allows the use of collocated actuators
and sensors in multiple-input–multiple-output (MIMO) systems. It is well known that the transfer function of
a lightly damped system with a collocated actuator–sensor pair displays a line of interlacing poles and zeros
just to the left of the imaginary axis. The benefits of this arrangement were discussed in detail by Preumont [27]
who showed the trajectory of one such pole to be into the left-hand half-plane, therefore remaining stable
under closed-loop control. In addition to velocity feedback, for active damping, the method uses displacement
feedback for active stiffness, thereby enabling the assignment of both poles and zeros to desired locations in
the complex s-plane. The assignment of zeros is of special interest in vibration analysis because the vibration
can be made to vanish at chosen frequencies and locations. Active stiffness is more difficult to achieve than
active damping [28] as can be appreciated when considering the location of a modal circle on the Nyquist
diagram. In the case of velocity feedback the modal circle is confined to the right-hand half of the diagram,
whereas for displacement feedback the circle occupies the lower two quadrants and can therefore be very close
to the threshold of instability at �1. The method, described in the following section, is applied to both
numerical and experimental examples. Three experiments on a ‘T’-shaped plate are described. In the first
experiment, four poles are assigned, and in the second, two zeros are assigned, each to the two-point-
receptances corresponding to the locations of collocated proof-mass actuators and accelerometers. In the third
experiment poles and zeros are assigned simultaneously. In all the experiments, the other poles of the system at
higher frequencies are found to remain stable.

2. Poles and zeros

The dynamical equations, in the Laplace frequency domain, may be cast in the form of the second-order
matrix equation,

ðs2Mþ sCþ KÞxðsÞ ¼ BuðsÞ þ pðsÞ, (1)

where M, C, KARn� n; M ¼MT; C ¼ CT; K ¼ KT; M40; C, KX0 are the usual structural stiffness, damping
and mass matrices, BARn�m is the control force distribution matrix, x(s), p(s)ARn� 1 represent the
displacement states and external forces, respectively, and u(s)ARm� 1 is the control force. Likewise, the output
equation may be written as

yðsÞ ¼ DxðsÞ, (2)

where DARl� n is the sensor distribution matrix and the output is denoted by yARl� 1. The feedback law is
expressed as

uðsÞ ¼ �ðGþ sFÞyðsÞ, (3)

so that the output and rate gains are given by the terms in the matrices G,FARm� l.
Then, combining Eqs. (1)–(3) leads to,

ðs2Mþ sCþ Kþ BðGþ sFÞDÞxðsÞ ¼ pðsÞ. (4)

Our purpose is to assign poles lj of the closed-loop system determined by the solution of,

det l2j Mþ ljðCþ BFDÞ þ ðKþ BGDÞ
� �

¼ 0; j ¼ 1; 2; . . . ; r; rp2n (5)

which we assume to be distinct and closed under conjugation. A necessary and sufficient condition is that the
matrices M, (C+BFD) and (K+BGD) should be real.
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The closed-loop zeros, mk, of the ppth point receptance, denoted hpp(s), are given by the solution of a
different eigenvalue problem,

det m2kMp þ mkðCþ BFDÞp þ ðKþ BGDÞp

� �
¼ 0, (6)

where Mp is the submatrix corresponding to the ppth term of M. Thus,

M ¼
mpp mT

p

mp Mp

" #
; mT

p ¼
mp1 . . . mp;p�1 mp;pþ1 . . . mpn

h i
(7,8)

and

Mp ¼

m11 � � � m1;p�1 m1;pþ1 � � � m1n

..

. ..
. ..

. ..
.

mp�1;1 � � � mp�1;p�1 mp�1;pþ1 � � � mp�1;n

mpþ1;1 � � � mpþ1;p�1 mpþ1;pþ1 � � � mpþ1;n

..

. ..
. ..

. ..
.

mn1 � � � mn;p�1 mn;pþ1 � � � mnn

2
666666666664

3
777777777775

(9)

with similar definitions for the submatrices (C+BFD)p and (K+BGD)p. It is seen that the zeros are the
eigenvalues of the system grounded at the pth coordinate. As with the poles, we assume the zeros to be distinct
and closed under conjugation.

3. Pole and zero assignment by using receptances

The receptance matrix of the open-loop system is now defined as

HðsÞ ¼ ðs2Mþ sCþ KÞ�1. (10)

Premultiplying both sides of Eq. (4) by H(s) then gives,

ðIþHðsÞDZðsÞÞxðsÞ ¼ HðsÞpðsÞ; (11)

where

DZðsÞ ¼ BðGþ sFÞD (12)

and finally the closed-loop receptance equation can be expressed in terms of the open-loop receptances as

xðsÞ ¼ ðIþHðsÞBðGþ sFÞDÞ�1HðsÞpðsÞ (13)

or

xðsÞ ¼
adjðIþHðsÞBðGþ sFÞDÞ

detðIþHðsÞBðGþ sFÞDÞ
HðsÞpðsÞ: (14)

The closed-loop system poles may be assigned by selecting real-valued gains G, F, to satisfy the nonlinear
characteristic equations,

det IþHðljÞBðGþ ljFÞD
� �

¼ 0; j ¼ 1; 2; . . . ; r; rp2n, (15)

where the assigned poles are distinct and closed under conjugation. Since the equations are nonlinear in the
gains there may be one or more strictly real solutions G, F or there may be no solution, in which case the
closed-loop system is uncontrollable.

The zeros of the closed-loop system occur when terms in the numerator matrix product,
adj(I+H(s)B(G+sF)D)H(s), vanish to zero. The zeros of the ppth receptance may therefore be assigned by
selecting gains such that,

adj IþHðmkÞBðGþ mkFÞD
� �

HðmkÞ
� �

pp
¼ 0. (16)
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We consider zeros that are distinct and closed under conjugation, so that if a solution (or solutions) exist
then the gains are found to be strictly real.

If the sensors and actuators are collocated,

D ¼ BT 2 <m�n (17)

and the gain matrices are symmetric and positive semi-definite,

G ¼ GT
2 <m�m; F ¼ FT 2 <m�m; G; FX0, (18)

then it is seen from Eq. (5) that the closed-loop system matrices are symmetric with unchanged definiteness
properties, which means that the poles have strictly negative real parts. In practice the actuator and
sensor dynamics, neglected in the above theory, must be considered, as indeed they are in the experimental
study that follows in Section 5. The use of collocated actuator–sensor systems was discussed in detail by
Preumont [27].

The resulting characteristic equations (Eqs. (5) and (6) combined with Eqs. (17) and (18)) retain
considerably greater freedom in the choice of control gains than does a passive structural modification by the
adjustment of physical parameters such as beam cross sections or added masses.

In the following numerical and experimental examples the gain matrices are diagonal,

F ¼ diag f i

� �
; G ¼ diagðgiÞ; i ¼ 1; 2; . . . ;m. (19)

This is perhaps the simplest form for the gain matrices, but it should be noted that in more complex
or larger structural problems there may be advantages in retaining the fully populated symmetric form
of Eqs. (18). In principle, the fully populated matrices should allow more poles and zeros to be assigned
than the number of actuators and sensors. Alternatively, a greater number of solutions to the nonlinear
characteristic equations may become available, thereby allowing the selection of gains that result in
the least cost of control or that render those assigned poles and zeros least sensitive to small changes in the
gain terms.

4. Numerical examples

The method is illustrated by a series of eigenvalue assignment exercises based upon the system shown in
Fig. 1. The parameters of the system have the following values: k1 ¼ 3, k2 ¼ 2, k3 ¼ 2, k4 ¼ 1, c1 ¼ 0.1,
c2 ¼ 0.1, m1 ¼ 2, m2 ¼ 1, m3 ¼ 3.

Example 1 (Assignment of poles). Two pairs of complex conjugate poles at l1,2 ¼ �0.0170.7i and
l3,4 ¼ �0.0671.8i are assigned using two actuators supplying feedback control forces at masses m1 and m3.

The mass, damping and stiffness matrices are given by

M ¼

2 0 0

0 1 0

0 0 3

2
64

3
75; C ¼

0:1 0 0

0 0:1 �0:1

0 �0:1 0:1

2
64

3
75; K ¼

6 �2 �1

�2 4 �2

�1 �2 3

2
64

3
75
k1 k4

k3

k2

x1 x2 x3

c2

f3
f1

m1

m2

m3

c1

Fig. 1. Three degree-of-freedom system.
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and the matrices B and D are chosen to be,

D ¼ BT ¼
1 0 0

0 0 1

� 	
,

so that y1 ¼ x1, y2 ¼ x3.
The open-loop system receptances are at the values of s corresponding to the chosen eigenvalues,

HðljÞ ¼ Ml2j þ Clj þ K
� ��1

; j ¼ 1; . . . ; 4.

Four characteristic equations (17), generally nonlinear in the gains, gi, fi, are then solved numerically using a
Gauss–Newton method,

det I�HðljÞBdiag f i þ ljgi

� �
BT

� �
¼ 0; j ¼ 1; . . . ; 4

with the result that,

F ¼ diagð0:0999; 0:0475Þ; G ¼ diagð2:3873; 0:3401Þ:

In order to validate the results, the eigenvalues of the closed-loop system are obtained by the state-space
method,

A ¼
0 I

�M�1ðKþ BdiagðgiÞB
TÞ �M�1ðCþ Bdiagðf iÞB

T
Þ

" #
,

where

ðCþ Bdiagðf iÞB
TÞ ¼

0:1999 0 0

0 0:1 �0:1

0 �0:1 0:1475

2
64

3
75

and

ðKþ BdiagðgiÞB
TÞ ¼

8:3873 �2 �1

�2 4 �2

�1 �2 3:3401

2
64

3
75

which yields the following poles:

l1;2 ¼ � 0:0100� 0:7000i;

l3;4 ¼ � 0:0600� 1:8000i;

l5;6 ¼ � 0:0546� 2:3599i:

The first two pairs exactly replicate the values assigned and the third pair of poles are stable. The initial and
modified receptances at m1 are plotted in Fig. 2, represented by the solid (blue) and dashed (red) line,
respectively.

Example 2 (Assignment of zeros). The zero assignment is considered for the point receptance h22. Two pairs of
complex conjugate zeros m1,2 ¼ �0.02571.2i and m3,4 ¼ �0.03772i are assigned using the feedback control
forces at masses m1 and m3.

The sets of nonlinear equations (18) are solved to obtain the gains fi and gi

adj IþHðmjÞBdiagðgi þ mj f iÞB
T

� �
HðmjÞ

� �
22
¼ 0; j ¼ 1; . . . ; 4

which yields

F ¼ diagð0:0493; 0:048Þ; G ¼ diagð1:8691; 1:5223Þ:
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The zeros, being the eigenvalues of the system grounded at the second coordinate, may be obtained by the
state-space method using the gains determined above. Thus,

A ¼
0 I

�M�12 ðKþ BdiagðgiÞB
T

� �
2
�M�12 ðCþ Bdiagðf iÞB

T
� �

2

" #
,

0 0.5 1.5 2.5 3.5 4.51 2 3 4 5

0 0.5 1.5 2.5 3.5 4.51 2 3 4 5

Frequency (rad/s)

10−2

100

102

A
m

p
lit

u
d
e

−200

−150

−100

−50

0

P
h
a
s
e

Fig. 3. Example 2—initial receptance (solid line) and modified receptance (dashed line).
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Fig. 2. Example 1—initial receptance (solid line) and modified receptance (dashed line).
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where

Cþ Bdiagðf iÞB
T

� �
2
¼

0:1493 0

0 0:1480

� 	

and

Kþ BdiagðgiÞB
T

� �
2
¼

7:8691 �1

�1 4:5223

� 	

which yields the zeros,

m1;2 ¼ � 0:025� 1:2i;

m3;4 ¼ � 0:037� 2i;

for the point receptance h22. The initial and modified receptances, plotted in Fig. 3, are represented by the solid
(blue) and dashed (red) lines, respectively.

Example 3 (Assignment of poles and zeros together). Poles and zeros are assigned to h11 at l1,2 ¼ �0.0270.7i
and m1,2 ¼ �0.00870.9i, respectively. Four nonlinear equations are solved simultaneously

det I�Hðl1ÞBdiagðf i þ l1giÞB
T

� �
¼ 0,

det I�Hðl2ÞBdiagðf i þ l2giÞB
T

� �
¼ 0,

adj IþHðm1ÞBdiagðgi þ m1f iÞB
T

� �
Hðm1Þ

� �
11
¼ 0,

adj IþHðm2ÞBdiagðgi þ m2f iÞB
T

� �
Hðm2Þ

� �
11
¼ 0

which yields to the following gains:

F ¼ diagð0:4023; 0:0404Þ; G ¼ diagð0:3720; 0:6836Þ:
0 0.5 1.5 2.5 3.5 4.51 2 3 4 5
10−4

100
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102
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p
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d
e

0 0.5 1.5 2.5 3.5 4.51 2 3 4 5

Frequency (rad/s)
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−150

−100

−50

0

P
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a
s
e

Fig. 4. Example 3—initial receptance (solid line) and modified receptance (dashed line).



ARTICLE IN PRESS
J.E. Mottershead et al. / Journal of Sound and Vibration 311 (2008) 1391–1408 1399
State-space analysis, using these gains, results in the poles,

l1;2 ¼ � 0:0200� 0:7000i;

l3;4 ¼ � 0:0992� 1:6497i;

l5;6 ¼ � 0:0798� 2:2755i

and zeros,

m1;2 ¼ � 0:0080� 0:9000i;

m3;4 ¼ � 0:0654� 2:1007i:

The initial and modified receptances h11 are plotted in Fig. 4, represented by the solid (blue) and dashed
(red) line, respectively.
Fig. 6. (a) First mode (stem bending) and (b) second mode (stem twisting).

3 mm

250 mm

100 mm

12.5 mm

60 mm

50 mm

30 mm

Fig. 5. T-shaped plate: (a) dimensions and (b) experimental arrangement.
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5. Experimental examples

Experiments were carried out on the T-shaped plate shown in Fig. 5 using two sets of collocated sensors
(Kistler accelerometer type 8636C50) and inertial actuators (Micromega Dynamics type IA-01). The internal
active damper that forms part of the inertial actuator, based on analogue integration of acceleration was not
used. Instead, signals from the Kistler accelerometers were integrated twice by digital means, thereby enabling
both velocity and displacement feedback, implemented using MATLAB/Simulink and dSPACE. Open-loop
receptances were measured by means of a modal test using hammer excitation with the inertial actuators in place
but not operational. The H1 estimator was applied using the following test parameters: sample rate 256Hz,
frequency resolution 0.125Hz, number of hits 20 and an exponential window with a decay to 1% applied to the
measured accelerations. The first two natural frequencies of the open-loop system were at 40Hz (252 rad/s) and
52Hz (325 rad/s). The first mode was a stem bending mode and the second showed stem twisting with the two
arms in anti-phase. The third natural frequency, in-phase arm bending, occurred at 125Hz (785 rad/s) some
distance away from the first two modes. The first two mode shapes are shown in Fig. 6.
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Frequency (rad/s)
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e
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Fig. 7. Rational fraction curve fit (a) h11(io), (b) h12(io) measurement—solid line; fitted curve—dashed line.
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The purpose of using receptances instead of the M, C, K matrices is that uncertainties, approximations and
assumptions associated with finite element models are avoided completely. However H(io) is available from
vibration experiments and not H(s), as required by the theory. Rational fraction polynomials were fitted to the
measured terms in H(io) and the coefficients of the numerator and denominator polynomials determined [29].
The coefficients were found by solving a least-squares problem, which should be well conditioned so that the
coefficients are not sensitive to small changes in the measurements. The receptances h11(io) and h22(io)
were almost identical because of geometric symmetry of the T-plate and due to linearity h12(io) and h21(io)
were found to be very similar. The fitted receptances are presented in Fig. 7 where measurements are
represented by full lines (blue) and fitted curves are shown as dashed lines (red). The good agreement shown in
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Fig. 9. Assignment of poles. Solid line: open-loop receptance. Dashed line: closed-loop receptance for the first test. Dot-dashed line:

closed-loop receptance for the second test.
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Fig. 8. Actuator force–voltage transfer function.
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Fig. 7, for amplitude, was similarly obtained for phase. The following polynomials were identified:

h11ðsÞ ¼ h22ðsÞ ¼
7:956� 10�10s2 þ 1:382� 10�8sþ 6:438� 10�5

1:476� 10�10s4 þ 4:987� 10�9s3 þ 2:515� 10�5s2 þ 0:0003862sþ 1
,

h12ðsÞ ¼ h21ðsÞ ¼
�1:334� 10�10s2 � 4:678� 10�9sþ 5:208� 10�6

1:476� 10�10s4 þ 4:987� 10�9s3 þ 2:515� 10�5s2 þ 0:0003862sþ 1
.

It should be pointed out that the rational fraction polynomials represent a model of the system. However all
that is required of this model is that it is accurate at the chosen location of the poles and zeros to be assigned.
In the case of lightly damped systems it is likely that the identified rational fraction polynomial will be accurate
if the curve fit agrees closely with the measured terms in H(io).

An expression for the force–voltage transfer function of an inertial actuator with a fixed base is given by
Preumont [27]. Above a critical frequency it is shown that the actuator behaves as an ideal force generator
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with constant amplitude and zero phase. This is the case shown in Fig. 8, the force being measured by a force
sensor inserted between the base of the actuator and a heavy rigid mass. Preumont’s analysis is in fact a
simplification of the real situation since the actuator was fixed to the flexible T-plate in our control application.
However a small distance away from the T-plate resonances the expression was found to hold good. A gain of
0.37 was obtained from the curve shown in Fig. 8, being the average value of the almost constant pure gain
(zero phase) at frequencies greater than the natural frequency of the actuator at around 65 rad/s.

Experiment 1 (Assignment of poles). Poles were firstly assigned at l1,2 ¼ �127284i and l3,4 ¼ �227365i and
then in a second test at l1,2 ¼ �107290i and l3,4 ¼ �257375i. In all of the three experiments the force and
sensor distribution matrices were set to B ¼ D

T
¼ I, where I denotes the identity matrix. In the first test, gains

with the values of G ¼ diag(205,10955) and F ¼ diag(4.4,11.8) were found and in the second test
G ¼ diag(124,14339) and F ¼ diag(0.5,11.19). Fig. 9 shows experimental receptances for the open-loop
system as the full line (blue) and closed-loop receptances, h11, for the first and second tests. The receptance for
the first test is shown as a dashed line (red) and for the second test as a dot-dashed line (green). As expected,
the peaks of the dashed and dot-dashed lines can be seen to agree very well with the imaginary parts of the
assigned poles for the first and second test, respectively. The actuators were operational during the closed-loop
modal tests used to determine the receptances from excitation by an instrumented hammer.

Experiment 2 (Assignment of zeros). To maintain geometrical symmetry of the T-plate identical zeros were
assigned to h11 and h22 at m1,m2 ¼ �107300i. Gains were determined as F ¼ 1.8I, G ¼ 3735I. Experimental
open-loop and closed-loop receptances are shown in Fig. 10 where the frequency of the zeros is seen to agree
very well with the assigned value of 300 rad/s and the poles remain stable.

Experiment 3 (Simultaneous assignment of poles and zeros). Poles and zeros were assigned to h11 at
l1,2 ¼ �157295i and m1,2 ¼ �127265i, respectively. Gain values of G ¼ diag(3720, 2355) and F ¼ diag
(2.24, 5.75) were found and the resulting open-loop and closed-loop receptances were found as shown in
Fig. 11. It can be seen in Fig. 11 that the frequencies of the first peak and dip of the dashed (red) line, that
represents the closed-loop receptance, agree closely with the imaginary part of the assigned poles and zeros.
5.1. Stability robustness

In this section the stability robustness of the experimental T-plate structure to active vibration control by
pole-zero placement is addressed. The problem considered is that of Example 2 in Section 4 above, namely the
assignment of zeros of h11 and h22 to m1,m2 ¼ �107300i. The open-loop transfer function between the input
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voltage to the actuators and the output displacement y(s) is then defined as 0.37�H(s)B diag(gi+sfi)B
T, where

the gain of 0.37 represents the actuator dynamic as described previously.
Open-loop experiments were carried out by applying random voltages to the actuators in the range of

0–1000Hz and measuring the output voltages, calibrated for displacement, from the dSPACE board. The
frequency-domain requirements for the stability of single-input–single-output (SISO) systems take the form of
the standard Nyquist criterion and in the MIMO case they involve its multivariable generalisation [30]. Thus
the system may be considered stable if det[I+0.37�H(io)B diag(gi+iofi)B

T], 0oooN, does not enclose the
point (0, 0). It can be seen from Figs. 12(a) and (b) that this appears to be the case, although the system is
extremely close to being marginally stable. The spectrum in Fig. 13 shows good roll-off of the eigenvalues l1
and l2 of the open-loop transfer function, indicated by the dashed line (red) and solid line (blue), respectively,
thereby confirming that in practice spillover does not lead to instability at higher frequencies.
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The robustness of the closed-loop system can be improved by increasing the minimum singular value s of
[I+0.37�H(s)B diag(gi+sfi)B

T] as explained by Maciejowski [31], thereby defining the following constraint:

s Iþ 0:37�HðsÞBdiagðgi þ sf iÞB
T

� �
4r

on the solution of the nonlinear characteristic equations.
In our particular example, a constraint of s40:7 was applied over the frequency range of 50–100Hz. The

resulting control gains were found to be,

F ¼
12:7 0

0 13:8

� 	
; G ¼

3734:9 0

0 3734:9

� 	
.
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In Fig. 14(a) the solid (blue) line denotes s versus frequency without constraint. The dashed (red) line is the
case of s40:7 for the range of 50–100Hz. A series of modal tests using hammer excitation were carried out
with the feedback control gains obtained with the added constraints s40:6 and 0:7. The solid (blue) line in
Fig. 14(b) represents the unconstrained open-loop receptance. The dashed (red) and dot-dashed (green) lines
represent the closed-loop receptances after the added constraints s40:6 and 0:7 were applied over the range
of 50–100Hz. It is seen that the effect of the constraints is to add damping and thereby improve the stability
robustness of the T-plate system. Of course, this is achieved at the cost of reduced accuracy in the placement of
the zeros.

A further constraint, s40:45, was then added to the range 6–10Hz to address the sharp ‘dip’ in the dashed
line of Fig. 14(a) at low frequencies. In the range 50–100Hz the lowest singular value was constrained such
that s40:9. Control gains were then obtained as

F ¼
17:35 0

0 22:64

� 	
; G ¼

1709:5 0

0 2164

� 	
.

Fig. 15 shows the minimum singular values and the closed-loop receptances for the system, now with two
constraints. This results in considerably increased damping over the previous test and further deterioration in
the accuracy of placing the zeros.

6. Conclusions

Active vibration suppression by eigenvalue assignment using output feedback and the receptance method is
presented. The method does not require the usual M, C, K matrices but uses measured receptances from the
open-loop system instead. Illustrative numerical examples are presented, as are the results of a physical
experiment using collocated inertial actuators and accelerometers, to assign poles and zeros (natural
frequencies and anti-resonances). In the experiments, receptances H(s) are determined from the measured
H(io) by fitting rational fraction polynomials. Closed-loop receptances, obtained by applying gains
determined from the analysis, have peaks and dips that agree very closely with the imaginary parts of the
assigned poles and zeros. The stability robustness may be improved by applying a constraint to the singular
values of the matrix return difference.
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